Early Detection of Coronary Heart Disease Based on Machine Learning Methods

نویسندگان

چکیده

Aim: Heart disease detection using machine learning methods has been an outstanding research topic as heart diseases continue to be a burden on healthcare systems around the world. Therefore, in this study, performances of for predictive classification coronary were compared.Material and Method: In three different models created with Random Forest (RF), Logistic Regression (LR), Support Vector Machine (SVM) algorithms disease. For hyper parameter optimization, 3-repeats 10-fold repeated cross validation method was used. The performance evaluated based Accuracy, F1 Score, Specificity, Sensitivity, Positive Predictive Value, Negative Confusion Matrix (Classification matrix).Results: RF 0.929, SVM 0.897 LR 0.861 classified accuracy. F1-score, values model calculated 0.928, 0.929 respectively. Sensitivity value higher compared RF. Conclusion: Considering accurate rates Coronary disease, outperformed models. Also, had highest sensitivity value. We think that result, which high criterion order minimize overlooked patients, is clinically very important.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on the comparison of keyword and semantic-context methods of learning new vocabulary meaning

the rationale behind the present study is that particular learning strategies produce more effective results when applied together. the present study tried to investigate the efficiency of the semantic-context strategy alone with a technique called, keyword method. to clarify the point, the current study seeked to find answer to the following question: are the keyword and semantic-context metho...

15 صفحه اول

An Exercise Fatigue Detection Model Based on Machine Learning Methods

An Exercise Fatigue Detection Model Based on Machine Learning Methods Ming-Yen Wu 1 Chi-Hua Chen 2,* Chi-Chun Lo 3 1 Telecommunication Laboratories, Chunghwa Telecom Co., Ltd. 2 Department of Information Management, National Kaohsiung University of Science and Technology 3 Department of Information Management and Finance, National Chiao Tung University corresponding author: Chi-Hua Chen (Email:...

متن کامل

Noninvasive Detection of Coronary Artery Disease Based on Heart Sounds

In this study, four channels' heart sounds of normal persons and patients with coronary artery disease (CAD) were detected by a highly sensitive sound sensors array placed on special positions of body's thorax, the acquired signals were analyzed using wavelet transform and neural networks. Wavelet transform is a highly applicable method to separate the complicated heart sounds into various freq...

متن کامل

Improving the Performance of Machine Learning Algorithms for Heart Disease Diagnosis by Optimizing Data and Features

Heart is one of the most important members of the body, and heart disease is the major cause of death in the world and Iran. This is why the early/on time diagnosis is one of the significant basics for preventing and reducing deaths of this disease. So far, many studies have been done on heart disease with the aim of prediction, diagnosis, and treatment. However, most of them have been mostly f...

متن کامل

the effect of lexically based language teaching (lblt) on vocabulary learning among iranian pre-university students

هدف پژوهش حاضر بررسی تاثیر روش تدریس واژگانی (واژه-محور) بر یادگیری لغات در بین دانش آموزان دوره پیش دانشگاهی است. بدین منظور دو گروه از دانش آموزان دوره پیش دانشگاهی (شصت نفر) که در سال تحصیلی 1389 در شهرستان نور آباد استان لرستان مشغول به تحصیل بودند انتخاب شده و به صورت قراردادی گروه آزمایش و گواه در نظر گرفته شدند. در ابتدا به منظور اطمینان یافتن از میزان همگن بودن دو گروه از دانش واژگان، آ...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Medical records-international medical journal

سال: 2022

ISSN: ['2687-4555']

DOI: https://doi.org/10.37990/medr.1011924